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GRID BASED GEOMETRIC OPTICS 

Why?  Problems with ray tracing: 

Diverging Rays – Miss large regions 

PDE’s on grids have advantages: e.g. other physics can be easily attached, 
Self interpolation, accurate finite difference schemes… 
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e.g.  Scalar Wave Equation: 
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eikonal equation. 



4 

We want the multivalued solution to this eikonal equation. 
The eikonal equation is nonlinear, but solutions to the wave 
equation superpose linearly. 
 

cross through each other 
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This can be computed by the method of characteristics from 
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Ray Tracing 

Diverging Rays cause 
problems 
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Grid Based PDE Approaches 
(Vidale, Fatemi-Engquist-Osher, Benamou) 

 
Viscosity solution of Hamilton-Jacobi eikonal equation 

(Crandall-Lions,…) 

single valued, loses 
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Patch together somehow 
 
+ uses upwind H.-J. monotone, ENO, WENO schemes 
(O-Shu, O-Sethian,  Jiang-Peng) 
 
Self interpolates 
 
- Loses multivaluedness – need to patch things together. 
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Level Set Method 

 

 Represented by  x with: ( ) 0x 
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Easy geometry extraction, topological changes 
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Vector Level Set Method 
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e.g. 

Intersection of 2 level sets can evolve by moving        ,         
 
So curve           in          can evolve by moving        ,          . ( )t

3R 1 2
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New idea, based on using vector valued level set method to 
move high codimension stuff, e.g. curves in       
(VVLSM invented by Burchard, Cheng, Merriman & O, 1999) 
 
(suggested as a theoretical device by Ambrosio-Soner) 
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Geometry of       
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Use Liouville (Vlasov??) equation 
 
Solve for                   , with                       ,                       ,  
2d + 1   independent variables 
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Can lower the dimension by one 
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Thus we can use angle variables for d = 2.  Need only  
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Two linear, decoupled equations 
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NOTE    if       has disjoint components in      ,      ,       space at 
                , they never intersect at later       in this (cotangent space) 
representation. 
 
Also Note:  propagation speed involves 
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so different time step restriction, generally a bit more restrictive. 
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In 3D we have spherical coordinates 

1 2 1 2 1| | (cos cos ,  cos sin ,sin )P P      

Reduce it to a  5 dimension + time problem. 
 
System of 3 equations: 
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Trouble at                       (north & south poles) 
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Complexity seems high.  But we can use local level set. 

In principle we are looking at a manifold of dimension d-1 + time. 

Should be complexity                           to update, also low storage. 

We now have that. 

 

Solve only near where               . 

1( log )dn n

0u 
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Earlier work:    Engquist,  Runborg,  Tornberg 

Use segment projection:    needs logic – many many 
segments can develop. 

 

Complexity is the same, intricate programming 

Our method:     Review:     for d = 2 
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Intensity 
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Easy (passive)  calculation. 
 
Also 3D. 
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Initialization 

Given an initial surface via a level set function 
 
 
Initialize 
 
 
 
 
 
In 3D  
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                               Example:        2D 
 
Start with an ellipse 
 
 
 
 
 
 
 
 
 
Say        
 
Then 
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Curve                              ,  is : 
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                               Other example in 2D 
 
Suppose initial data for eikonal equation is given at               
 
 
 
Then 
 
 
 
 
 
 
 
 
 
 
simple initialization 
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                         3D   example :      Initially ellipse 
 
 
 
 
 
 
 
 
Can initialize : 
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Reflection:     let                                                        1 2  ( )   in  ,     ( )  in  cc c x c c x   
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                     Reflection 
 
 

Treat as an initial – boundary value problem: 
 
The value of u corresponding to        ,         which is 
incoming = value of u at  
 

       is the angle of the outwards normal.  Discrete 

values of        are given so we interpolate in        . 

 
Transmission:     via Snell’s Law;   solve initial     
boundary value problem and      
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                                More about reflection 
 
Give (x, y) lying on boundary of        and any     ,  
                                 
This translates into : 
 
No boundary conditions needed for incoming ray 
 (upwind differencing takes care of this) 
Reflection boundary conditions as above for reflected rays. 
Since we use x, y differencing, we 
 
(a) Interpolate if an incoming ray “upwinds” the wrong way at     

the boundary 
(b) use a subgrid interpolant to go to the boundary for the 

reflected wave 
(c)  Make sure that we stop at least        away from this subgrid 

point 
(d) Limit the ENO stencils so as not to cross the boundary  

 
Works well in 2 and 3D. 
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Alternative for transmission: 
 
Just solve directly 
 
 
Have approximate delta function coefficients of       , just solve 
By smoothing  c  slightly and restricting 
 
 
 
Works, but slower, actually works even with                    !! 
Automatically get Snell’s Law. 
 
 
3D also simple. 
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Exciting New Stuff 
 

Computing Multiphase Semiclassical Limits of Schrödinger Equation 
S. Osher, S. Jin, Y.-H. Tsai, H. Liu and L.-T. Cheng 
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Define                                 
 
 

Use vector level set method, 

    get linear Liouville system 

 

 

Solve for  

multivalued 
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Compute single valued density                     
Then : 
                        also satisfies Liouville equation 
 
Can desingularize problem 
Compute 
 
 
gives mass 
 
 
 
given ith component of momentum 
 
New Approach 
No moments 
No Wigner Transform 
Works in multi-dimension 
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